InterviewSolution
Saved Bookmarks
| 1. |
If `alpha` and `beta` are the roots of the equation `x^2-p(x+1)-q=0` then the value of `(alpha^2+2alpha+1)/(alpha^2+2alpha+q)` + `(beta^2+2beta+1)/(beta^2+2beta+q)` is(A)1 (B) 2 (C) 3 (D) 0A. 1B. 2C. 3D. 0 |
|
Answer» Correct Answer - A The given equation is `x^(2) - px - (p+q) = 0` `therefore" "alpha+beta = p and alpha beta = -(p+q)` `rArr" "alpha beta + alpha + beta = - q` `rArr" "alpha beta + alpha + beta + 1 = - q+1` `rArr" "(alpha + 1)(beta + 1) = 1 - q" "....(i)` Now, `(alpha^(2)+2 alpha + 1)/(alpha^(2)+2 alpha + q)+(beta^(2)+2 beta+1)/(beta^(2)+2 beta + q)` `=((alpha+1)^(2))/((alpha+1)^(2)+q-1)+((beta+1)^(2))/((beta+1)^(2)+(q-1))` `=((alpha+1)^(2))/((alpha+1)^(2)-(alpha+1)(beta+1))+((beta+1)^(2))/((beta+1)^(2)-(alpha+1)(beta+1))" "["using (i)"]` `(alpha+1)/(alpha+beta)+(beta+1)/(beta-alpha)=(alph-beta)/(alpha-beta) = 1`. |
|