

InterviewSolution
Saved Bookmarks
1. |
If `alpha and beta` are the zeros of the quadratic polynomial `f (x)= x^2-2x+3`, find a polynomial whose roots are (i) `alpha-2,beta-2` (ii) `(alpha-1)/(alpha+1),(beta-1)/(beta+1)` |
Answer» 1)`x^2-2x+3` `alpha+beta=2` `alpha*beta=3` `x^2-((alpha-2)(+(beta-2))x+(alpha-2)(beta-2)` `alpha-2+beta-2=(alpha+beta-4)` `(alpha-2)(beta-2)=alphabeta-2beta-2alpha+4` `3-2(2)+4=3` `x^2+2x+3=0`. 2)`(alpha-1)/(alpha+1)+(beta-1)/(beta+1)` `=((alpha-1)(beta+1)+(beta-1)(alpha+1))/((alpha+1)beta+1)` `=(2alphabeta-2)/(alphabeta+alpha+beta+1)` `=(2*3-2)/(3+2+1)=4/6=2/3` `=((alpha-1)/(alpha+1))((beta-1)/(beta+1))` `=(alphabeta-beta-alpha+1)/(alphabeta+alpha+beta+1)` `=(3-(2)+1)/(3+2+1)=2/6=1/3` `=x^2-2/3x+1/3=0` `3x^2-2x+1=0`. |
|