InterviewSolution
Saved Bookmarks
| 1. |
If `alpha,beta` be the roots of the equation `u^2-2u+2=0` and if `cottheta=x+1,` then `((x+alpha)^n-(x+beta)^n)/(alpha-beta)` is equal to (a) `((sin n theta),(sin^n theta))` (b) `((cosn theta),(cos^n theta))` (c) `((sinn theta),cos^n theta))` (d) `((cosn theta),(sintheta^n theta))`A. `(sinn ntheta)/(sin^(n) theta)`B. `(cos ntheta)/( cos^(n)theta)`C. `(sin ntheta)/(cos^(n) theta)`D. `(cos ntheta)/(sin^(n) theta)` |
|
Answer» Correct Answer - A `u^(2)-2u+2=0rArru=1pmi` `rArr ((x+alpha)^(n)-(x+beta)^(n))/(alpha-beta)` `=([(cottheta-1)+(1+i)]^(n)-[(cottheta-1)+(1-i)]^(n))/(2i)` `(thereforecottheta-1=x)` `=((costheta+isintheta)^(n)-(costheta-isintheta)^(n))/(sin^(n)theta 2i)` `=(2isinntheta)/(sin^(n)theta2i)` `(sin n theta)/(sin^(n)theta)` |
|