InterviewSolution
Saved Bookmarks
| 1. |
If `alpha,beta,gamma,sigma`are the roots of the equation `x^4+4x^3-6x^3+7x-9=0,`then he value of `(1+alpha^2)(1+beta^2)(1+gamma^2)(1+sigma^2)`is`9`b. `11`c. `13`d. 5A. 5B. 9C. 11D. 13 |
|
Answer» Correct Answer - D Since `alpha, beta, gamma, sigma` are the roots of the given equation. `therefore" "x^(4)+4x^(3)-6x^(2)+7x-9=(x-alpha)(x-beta)(x-gamma)(x-sigma)` Putting x = I and then x = -I, we get `1-4i+6+7i-9=(i-alpha)(i-beta)(i-gamma)(i-sigma)` and, `1+4i+6-7i-9=(-i-alpha)(-i-beta)(-i-gamma)(-i-sigma)` Multiplying these two, we get `(-2+3i)(-2-3i)=(1+alpha^(2))(1+beta^(2))(1+gamma^(2))(1+sigma^(2))` `rArr" "13 = (1+alpha^(2))(1+beta^(2))(1+gamma^(2))(1+sigma^(2))` |
|