1.

If `alpha+beta=pi/2` and `beta+gamma=alpha` then `tanalpha` equalsA. `2(tanbeta+tangamma)`B. `tanbeta+tangamma`C. `tan beta+2 tangamma`D. `2tanbeta+tangamma`

Answer» Correct Answer - C
We have,
`beta+gamma+alpha`
`impliesgamma=alpha=beta`
`tangamma=tan(alpha-beta)`
`impliestangamma=(tanalpha-tanbeta)/(1+tanalphatanbeta)`
`impliestangamma=(tanalpha-tanbeta)/(1+tanalphacot alpha)" "[becausealpha+beta=(pi)/(2)becausebeta=(pi)/(2)-alpha]`
`impliestangamma=1/2(tangamma-tanbeta)impliestanalpha=tanbeta+2tangamma.`


Discussion

No Comment Found