InterviewSolution
Saved Bookmarks
| 1. |
If `alpha+beta=pi/2` and `beta+gamma=alpha` then `tanalpha` equalsA. `2(tanbeta+tangamma)`B. `tanbeta+tangamma`C. `tan beta+2 tangamma`D. `2tanbeta+tangamma` |
|
Answer» Correct Answer - C We have, `beta+gamma+alpha` `impliesgamma=alpha=beta` `tangamma=tan(alpha-beta)` `impliestangamma=(tanalpha-tanbeta)/(1+tanalphatanbeta)` `impliestangamma=(tanalpha-tanbeta)/(1+tanalphacot alpha)" "[becausealpha+beta=(pi)/(2)becausebeta=(pi)/(2)-alpha]` `impliestangamma=1/2(tangamma-tanbeta)impliestanalpha=tanbeta+2tangamma.` |
|