InterviewSolution
Saved Bookmarks
| 1. |
If `alphaa n dbeta`are the solutions of the equation `at a ntheta+bs e ctheta=c ,`then show that `tan(alpha+beta)=(2a c)/(a^2-c^2)` |
|
Answer» `atantheta+bsectheta=c` `rArr bsectheta=c-a tan theta` `rArr b^(2)sectheta=(c-a tantheta)^(2)` `rArr b^(2)(1+tan^(2)theta=c^(2)+a^(2)tantheta-2ac tantheta` `rArr tan^(2)theta(b^(2)-a^(2))+2actantheta + (b^(2)-c^(2))=0` Now, the roots of the equation be `tanalpha` and `tanbeta`, `therefore tanalpha + tanbeta=(-2ac)/(b^(2)-a^(2))` and `tanalpha. tanbeta=(tanalpha+tanbeta)/(1-tanalphatanbeta)` `=((-2ac)/(b^(2)-a^(2)))/(1-(b^(2)-c^(2))/(b^(2)-a^(2)))=(-2ac)/((b^(2)-a^(2))-(b^(2)-c^(2)))` |
|