1.

If angles A, B, C and D of the quadrilateral ABCD, taken in order, are in the ratio 3:7:6:4, then ABCD is a(A) rhombus(B) parallelogram(C) trapezium(D) kite

Answer»

(C) trapezium

Explanation:

As angle A, B, C and D of the quadrilateral ABCD, taken in order, are in the ratio 3: 7: 6: 4,

We have the angles A, B, C and D = 3x, 7x, 6x and 4x.

Now, sum of the angle of a quadrilateral = 360o.

3x + 7x + 6x + 4x = 360o

⇒20x = 360o

⇒ x = 360 ÷ 20 =18o

So, the angles A, B, C and D of quadrilateral ABCD are,

∠A = 3×18= 54o,

∠B = 7×18o = 126o

∠C = 6×18o = 108o

∠D = 4×18o = 72o

AD and BC are two lines cut by a transversal CD

Now, sum of angles ∠C and ∠D on the same side of transversal,

∠C +∠D =108o + 72o =180

Hence, AD|| BC

So, ABCD is a quadrilateral in which one pair of opposite sides are parallel.

Hence, ABCD is a trapezium.

Therefore, option (C) is the correct answer.



Discussion

No Comment Found

Related InterviewSolutions