1.

If `b_(1),b_(2),b_(3),"….."b_(n)` are positive then the least value of `(b_(1) + b_(2) +b _(3) + "….." + b_(n)) ((1)/(b_(1)) + (1)/(b_(2)) + "….." +(1)/(b_(n)))` isA. `b_(1)b_(2)"…."b_(n)`B. `n^(2) + 1`C. `n(n+1)`D. `n^(2)`

Answer» Correct Answer - D
(i) Take `b_(1)=b_(2)=b_(03)"……."b_(n) = k` and find the value .
(ii) AM `(a_(1),a_(2),"……"a_(n)) ge HM (a_(1),a_(2),"…….",a_(n))`
(iii) `(a_(1)+a_(2)+"….."+a_(n)).(n) ge (n)/((1)/(a_(1))+ (1)/(a_(2)) + (1)/(a_(2)))`.


Discussion

No Comment Found

Related InterviewSolutions