Saved Bookmarks
| 1. |
If \(\begin{bmatrix}9 & -1 & 4 \\[0.3em]-2 & 1 & 3 \\[0.3em]\end{bmatrix}\)= \(A\,+\begin{bmatrix}1 &2& -1 \\[0.3em]0 & 4 & 9 \\[0.3em]\end{bmatrix}\), then find the matrix A. |
|
Answer» Given, \(\begin{bmatrix}9 & -1 & 4 \\[0.3em]-2 & 1 & 3 \\[0.3em]\end{bmatrix}\) = \(A\,+\begin{bmatrix}1 &2 & -1 \\[0.3em]0 & 4 & 9 \\[0.3em]\end{bmatrix}\) ⇒ A = \(\begin{bmatrix}9 & -1 & 4 \\[0.3em]-2 & 1 & 3 \\[0.3em]\end{bmatrix}\)- \(\begin{bmatrix}1 &2 & -1 \\[0.3em]0 & 4 & 9 \\[0.3em]\end{bmatrix}\) = \(\begin{bmatrix}8 & -3 & 5 \\[0.3em]-2 & -3 & -6 \\[0.3em]\end{bmatrix}\) |
|