

InterviewSolution
1. |
If \(\begin{bmatrix}x+3 & z+4 & 2y-7 \\[0.3em]4x+6 & a-1 & 0 \\[0.3em]b-3 & 3b &z+2c\end{bmatrix}\)= \(\begin{bmatrix}0 & 6 & 3y-2 \\[0.3em]2x & -3 & 2c+2 \\[0.3em]2b+4 & -21 &0\end{bmatrix}\)Obtain the values of a, b, c, x, y and z. |
Answer» Given two matrices are equal. \(\begin{bmatrix}x+3 & z+4 & 2y-7 \\[0.3em]4x+6 & a-1 & 0 \\[0.3em]b-3 & 3b &z+2c\end{bmatrix}\)= \(\begin{bmatrix}0 & 6 & 3y-2 \\[0.3em]2x & -3 & 2c+2 \\[0.3em]2b+4 & -21 &0\end{bmatrix}\) We know that if two matrices are equal then the elements of each matrices are also equal. ∴x + 3 = 0 ⇒ x = 0 – 3 = – 3 …(1) And z + 4 = 6 ⇒ z = 6 – 4 = 2 …(2) And 2y – 7 = 3y – 2 ⇒ 2y – 3y = – 2 + 7 ⇒ – y = 5 ⇒ y = – 5 …(3) 4x + 6 = 2x …(4) a – 1 = – 3 ⇒ a = – 3 + 1 = – 2 …(5) 2c + 2 = 0 ⇒ 2c = – 2 ⇒ c = – 1 … (6) b – 3 = 2b + 4 ⇒ b – 2b = 4 + 3 ⇒ – b = 7 ⇒ b = – 7 … (7) ∴ x = – 3, y = – 5, z = 2 and a = – 2, b = – 7, c = – 1 |
|