InterviewSolution
Saved Bookmarks
| 1. |
If `C_(0), C_(1), C_(2),C_(3),..., C_(n)` are the binomial coefficients in the expansion of `(C_(0))/(1)+(C_(2))/(3)+(C_(4))/(5)+(C_(6))/(7)+...,` is equal toA. `(2^(n+1))/(n+1)`B. `(2^(n+1)-1)/(n+1)`C. `(2^(n))/(n+1) `D. none of these |
|
Answer» Correct Answer - c From illustration 14 and 15, we have `(C_(0))/(1)+(C_(1))/(2) +(C_(2))/(3) +...+(C_(n))/(n+1) = (2^(n+1)-1)/(n+1)` and `(C_(0))/(1) + (C_(1))/(2) + (C_(2))/(3) - ... +(C_(n))/(n + 1)=(1)/(n+1)` Adding these two, we get `2((C_(0))/(1) + (C_(1))/(2) + (C_(2))/(3) +..... )=(2^(n+1))/(n + 1)` `rArr (C_(0))/(1) + (C_(2))/(3) + (C_(4))/(5) +..... =(2^(n))/(n + 1)`. |
|