InterviewSolution
Saved Bookmarks
| 1. |
If `C_(0), C_(1), C_(2),..., C_(n)` are binomial coefficients in the expansion of `(1 + x)^(n), ` then the value of `C_(0) - (C_(1))/(2) + (C_(2))/(3) - (C_(3))/(4) +...+ (-1)^(n) (C_(n))/(n+1)` is |
|
Answer» Correct Answer - b We have , `C_(0) - (C_(1))/(2) + (C_(2))/(3) - (C_(3))/(4) +...+ (-1)^(n) (C_(n))/(n+1)` `sum_(r=0)^(n) (-1)^(r) (C_(n))/(n+1)` `sum_(r=0)^(n) ((-1)^(r))/(r +1) .""^(n)C_(r)` `sum_(r=0)^(n) ((-1)^(r))/(r +1).(n+1)/(r+1) .""^(n)C_(r)` `= (1)/(n+1) sum_(r=0)^(n) (-1)^(r) .""^(n+1)C_(r+1)" "[because ""^(n+1)C_(r+1)=(n+1)/(r+1).""^(n)C_(r)]` ` (1)/(n+1) sum_(r=0)^(n) ((-1)^(r))/(r +1) .""^(n)C_(r)` `(1)/(n+1)[""^(n+1)C_(1)-""^(n+1)C_(2)+""^(n+1)C_(3)-""^(n+1)C_(4)+...+(-1)^(n) ""^(n+1)C_(n +1)]` `= - (1)/(n+1) [-""^(n+1)C_(1)+""^(n+1)C_(2)-""^(n+1)C_(3)+""^(n+1)C_(4)-...+(-1)^(n) ""^(n+1)C_(n +1)]` `-(1)/(n+1) [""^(n+1)C_(0)-0""^(n+1)C_(1)+""^(n+1)C_(2)-""^(n+1)C_(3)+...+(-1)^(n+1) ""^(n+1)C_(n +1)}-""^(n+1)C_(0)]` `= (1)/(n+1) {0 - ""^(n+1)C_(0)} = (1)/(n+1)` . |
|