InterviewSolution
Saved Bookmarks
| 1. |
If C_(0),C_(1),C_(2),...C_(n) are the binomial coefficients in the expansion of (1+x)^(n) then prove that:C_(0)+(C_(1))/(2)+(C_(2))/(3)+……+(C_(n))/(n+1)=(2^(n+1)-1)/(n+1) |
|
Answer» `=1+(n)/(2)+(n(n-1))/(|ul2.3)+....+(1)/(n+1)` ` =(1)/(n+1)[(n+1)+((n+2)n)/(|ul2)` `+((n+1)n(n-1))/(|ul3)+.....+1]` `=(1)/(n+1)[{1+(n+1)+((n+1)n)/(|ul2)` `+((n+1)n(n-1))/(|ul3)+......+1}-]` `=(1)/(n+1)[{.^(n+1)C_(0)+^(n+1)C_(1)+^(n+1)C_(2)` `+^(n+1)C_(3)+......+^(n+1)C_(n+1)}-1]` `=(1)/(n+1)[2^(n+1)-1]` `=(2^(n+1)-1)/(n+1)=R.H.S.` Hence PROVED |
|