InterviewSolution
Saved Bookmarks
| 1. |
If C is an arbitrary constant , then the general solution of the differential equation ` y dx - x dy = xy dx ` is given byA. ` y = Cxe^(-x)`B. ` y = Cye^(-x)`C. ` y + e^(x) = Cx`D. ` ye^(x) = Cx` |
|
Answer» Correct Answer - d Given , ` y (1-x) dx = xdy ` ` rArr (1/x -1) dx = 1/y dy ` ` rArr log (x) - x log y - log C` [ integrating ] ` rArr x = log. (xC)/y rArr ye^(x) = xC` |
|