1.

If C is an arbitrary constant , then the general solution of the differential equation ` y dx - x dy = xy dx ` is given byA. ` y = Cxe^(-x)`B. ` y = Cye^(-x)`C. ` y + e^(x) = Cx`D. ` ye^(x) = Cx`

Answer» Correct Answer - d
Given , ` y (1-x) dx = xdy `
` rArr (1/x -1) dx = 1/y dy `
` rArr log (x) - x log y - log C` [ integrating ]
` rArr x = log. (xC)/y rArr ye^(x) = xC`


Discussion

No Comment Found

Related InterviewSolutions