1.

If \(\cfrac{4+3\sqrt{3}}{2+\sqrt{3}}\) = a + √b then (a, b) = ……………(A) (12, 1) (B) (-1, 12) (C) (-12, -1) (D) (-12,1) 

Answer»

Correct option is (B) (-1, 12)

\(\frac{4+3\sqrt3}{2+\sqrt3}=a+\sqrt b\)

\(\Rightarrow\) \(a+\sqrt b=\frac{4+3\sqrt3}{2+\sqrt3}\times\frac{2-\sqrt3}{2-\sqrt3}\)

\(=\frac{8+6\sqrt3-4\sqrt3-9}{4-3}=-1+2\sqrt3\)

\(=-1+\sqrt{4\times3}=-1+\sqrt{12}\)

\(\therefore\) a = -1, b = 12

Thus, (a, b) = (-1, 12)

Correct option is (B) (-1, 12)



Discussion

No Comment Found