InterviewSolution
Saved Bookmarks
| 1. |
If `cos A, cosB and cosC` are the roots of the cubic `x^3 + ax^2 + bx + c = 0` where `A, B, C` are the anglesof a triangle then find the value of `a^2 – 2b– 2c`. |
|
Answer» Correct Answer - C cos A, cos B and cos C are the roots of the cubic equation `x^(3)+ax^(2)+bx + c=0` `rArr cos A+cos B + cos C = -a` cos A cos B + cos B cos C + cos C cos A = b cos A cos B cos C = -c Now `(cos A+cos B cosC)^(2)=(Sigma cos^(2)A)+2(Sigma cos A cos B)` `therefore cos^(2)A+cos^(2)B+cos^(2)C=a^(2)-2b` `therefore 3+cos 2A+cos 2B+cos 2C=2a^(2)-4b` `therefore 3-1-4 cos A cos B cos C = 2a^(2)-4b` `thererfore 1+2c=a^(2)-2b` `therefore a^(2)-2b-2c =1` |
|