1.

If cos alpha + cos beta + cos gamma = 0 and alos sin alpha + sin beta + sin gamma= 0, then provethat.(a)cos 2 alpha + cos 2 beta + cos 2gamma = sin 2alpha +sin2beta+sin2gamma=0(b)sin 3 alpha+ sin 3 beta + sin3 gamma = 3 sin (alpha + beta + gamma)(c)cos 3 alpha + cos 3beta + cos 3gamma = 3 cos (alpha + beta + gamma)

Answer»

Solution :Let `z_(1) = cos ALPHA + isin alpha,z_(2) = cos beta + isin beta`,
`z_(3) = cos gamma +isin gamma`
`thereforez_(1) +z_(2)+z_(3) = (cos alpha + cos beta + cos gamma)+i(sinalpha +sin beta + singamma)`
` = 0+ ixx 0 =0`
(a) Now, `(1)/(z_(1)) = (cos alpha + isin alpha)^(-1) = cos alpha- isin alpha`
`(1)/(z_(1)) =cos beta- isin beta`
`(1)/(z_(2)) =cos gamma-isingamma `
`therefore(1)/(z_(1))+(1)/(z_(2))+(1)/(z_(3))`
`=(cos alpha + cos beta + cos gamma) -i(sin alpha + sin beta + sin gamma) (2) `
`=0-ixx 0 =0`
`z_(1)^(2) + z_(2)^(2) + z_(3)^(2) =(z_(1) + z_(2) +z_(3))^(2) -2(z_(1)z_(2)+z_(2)z_(3)+z_(3)z_(1))`
`=0-2z_(1)z_(2)z_(3)((1)/(z_(3))+(1)/(z_(1)) +(1)/(z_(2)))`
`RARR (cos alpha + isin alpha)^(2) + (cos beta + isin beta)^(2) + (cosgamma+isin gamma)^(2) =0`
`rArr (cos 2alpha + isin 2alpha)+(cos 2beta+isin2)+(cos 2gamma +isin 2gamma)=0+ixx0`
Equating realand imaginary parts on both sides,
`cos 2alpha + cos 2beta + cos2gamma =0`
`and sin 2alpha + sin 2beta + sin2gamma = 0`
(b) `z_(1)^(3) +z_(2)^(3) +z_(3)^(3) =(z_(1) +z_(2))^(3) -3z_(1)z_(2)(z_(1) +z_(2))+z_(3)^(3)`
` = (-z_(3))^(3) -3z_(1)z_(2)(-z_(3))+z_(3)^(3)""["Using (1)"]`
`=3z_(1)z_(2)z_(3)`
`rArr (cos alpha+sin alpha)^(3)+(cos beta+ isinbeta)^(3) +(cos gamma + isin gamma)^(3)`
`= 3(cos alpha + isin alpha) (cos beta+isin beta)(cos gamma + isin gamma)^(3)`
`cos 3alpha +isin 3alpha +cos 3beta +isin 3beta + cos3gamma+ isin 3gamma`
`= 3{cos (alpha +beta+ gamma)+ isin (alpha + beta+gamma)}`
Equaiting imaginary parts on bothsides,
`sin 3alpha +sin 3 beta +sin 3gamma =3SIN(alpha + beta + gamma)`
(c) Equating real parts on both sides,
`cos 3alpha + cos3beta + cos 3gamma = 3cos (alpha+beta+gamma)`


Discussion

No Comment Found

Related InterviewSolutions