1.

If cos x = cos α cos β then prove that tan(\(\frac{x+a}{2}\)).tan (\(\frac{x-a}{2}\) ) = \(\frac{tan^2\beta}{2}\)

Answer»

Given, cosx = cosα cosβ 

  ∴ cos β = \(\frac{cosx}{cos\alpha}\)    ...(i) 

We know that, \(tan^2\frac{θ}{2}\) = \(\frac{1-cosθ}{1+cosθ}\) 

R. H. S = \(tan^2\frac{θ}{2}\) = \(\frac{1-cos\beta}{1+cos\beta}\) 

\(\frac{1-\frac{cos\alpha}{cosx}}{1+\frac{cosx}{cos\alpha}}\)

\(\frac{cos\alpha-cosx}{cos\alpha +cosx}\) 

= \(\frac{2sin(\frac{a+x}{2})sin(\frac{x-a}{2})}{2cos(\frac{x+a}{2})sin(\frac{x-a}{2}))}\)

= \(tan(\frac{x+a}{2}).tan(\frac{x-a}{2})\) 

[ ∵ cosC − cosD = −2 sin (\(\frac{C+D}{2}\)) sin (\(\frac{C-D}{2}\)

and cosC + cosD = 2 cos (\(\frac{C+D}{2}\)) cos (\(\frac{C-D}{2}\)) ] 

= L. H. S    Hence Proved



Discussion

No Comment Found