InterviewSolution
Saved Bookmarks
| 1. |
If cosecθ - cotθ = p , then the value of \(\frac{p^2-1}{p^2 + 1}\) is1. cosθ 2. -cosθ 3. sinθ 4. -sinθ |
|
Answer» 2. -cosθ = P = cosecθ - cotθ = \(\frac{sin\theta}{1+cos\theta}\) p2 + 1 cosec2 θ + cot2 θ - 2cosecθ cotθ = 2 cosec θ (cosecθ - cotθ) = \(\frac{2}{1+cos\theta}\) Now \(\frac{p^2-1}{p^2+1}=1-\frac{2}{p^2+1}=1-\) \(\cfrac{2}{\frac{2}{1+cos\theta}}\) = - cosθ |
|