1.

If cosecθ - cotθ = p  , then the value of \(\frac{p^2-1}{p^2 + 1}\) is1. cosθ 2. -cosθ 3. sinθ 4. -sinθ

Answer»

2. -cosθ 

= P = cosecθ - cotθ = \(\frac{sin\theta}{1+cos\theta}\)

p+ 1 cosecθ + cotθ - 2cosecθ cotθ

= 2 cosec θ (cosecθ - cotθ)

\(\frac{2}{1+cos\theta}\)

Now \(\frac{p^2-1}{p^2+1}=1-\frac{2}{p^2+1}=1-\) \(\cfrac{2}{\frac{2}{1+cos\theta}}\) = - cosθ



Discussion

No Comment Found

Related InterviewSolutions