1.

If `d/(dx)f(x)=4x^3-3/(x^4)`such that `f(2)=0.`Then f(x) is(A) `x^4+1/(x^3)-(129)/8` (B) `x^3+1/(x^4)+(129)/8`(C) `x^4+1/(x^3)+(129)/8` (D) `x^3+1/(x^4)-(129)/8`A. `x^(3) +(1)/(x^(4)) +(129)/(8)`B. `x^(4) +(1)/(x^(3)) - (129)/(8)`C. `x^(3) +(1)/(x^(4)) + (129)/(8)`D. None Of These

Answer» Correct Answer - B
`(d)/(dx)f(x) =4x^(2) -(3)/(x^(4))`
`rArr f(x) =4 int x^(3) dx-3 int x^(-4) dx`
` = x^(4) +x^(-3) +c`
`" Given that " f(2) =0`
`rArr 16+ (1)/(8) + c = 0`
`rArr c=-(129)/(8)`
`:. f(x) =x^(4) +(1)/(x^(3))-(129)/(8)`


Discussion

No Comment Found