1.

If e is eccentricity of the ellipse `(x^(2))/(a^(2))+(y^(2))/(b^(2))=1`(where,a`lt`b), thenA. `b^(2)=a^(2)(1-e^(2))`B. `a^(2)=b^(2)(1-e^(2))`C. `a^(2)=b^(2)(e^(2)-1)`D. `b^(2)=a^(2)(e^(2)-1)`

Answer» Correct Answer - B
Given that, `(x^(2))/(a^(2))+(y^(2))/(b^(2))=1 altb`
We know that, `e=sqrt(1-(a^(2))/(b^(2)))rArre^(2)=((b^(2)-a^(2)))/(b^(2))`
`rArr b^(2)e^(2)=b^(2)=a^(2)`
`rArra^(2)=b^(2)(1-e^(2))`


Discussion

No Comment Found