1.

If E1, E2, E3 are three mutually exclusive event and exhaustive events of an experiment such that– 2P(E1) = 3P(E2) = P(E3), then find P(E1).

Answer»

Since E1, E2, E3 are mutually exclusive and exhaustive events, so 

E1 ∩ E2 =ϕ , E2 ∩ E3 = ϕ, E1 ∩ E3 = ϕ, E1 ∩ E2 ∩ E3 = ϕ and E1 ∪ E2 ∪ E3 = S 

∴ p(E1 ∪ E2 ∪ E3) = E1 ∩ E2 ∩ E3 = ϕ p(E1) + p(E2) + p(E3)

⇒ P(S) = P(E1) + \(\frac{2}{3}\)P(E1) + 2P(F1)

⇒ 1 = P(F1) + \(\frac{8}{3}\)P(F1)

⇒ \(\frac{11}{3}\)P(E1) = 1

⇒ P(E1) = \(\frac{3}{11}\)



Discussion

No Comment Found

Related InterviewSolutions