1.

If f : R → R be defined by f(x) = x2 + 1, then find f-1{17} and f-1{–3}.

Answer»

Given,

f : R → R and 

f(x) = x2 + 1. 

We need to find,

f-1{17} and f-1{–3}. 

Let f-1{17} = x 

⇒ f(x) = 17

⇒ x2 + 1 = 17 

⇒ x2 – 16 = 0 

⇒ (x – 4)(x + 4) = 0 

∴ x = ±4 

Clearly, 

Both –4 and 4 are elements of the domain R. 

Thus, 

f-1{17} = {–4, 4} 

Now, 

Let f-1{–3} = x 

⇒ f(x) = –3 

⇒ x2 + 1 = –3 

⇒ x2 = –4 

However, 

The domain of f is R and for every real number x, 

The value of x2 is non-negative. 

Hence, 

There exists no real x for which x2 = –4. 

Thus, 

f-1{–3} = ∅



Discussion

No Comment Found