InterviewSolution
| 1. |
If f (x) = [4 – (x – 7)3]1/5 is a real valued function, then show that f is invertible and find f – 1. |
|
Answer» For f to be invertible, f should be bijective. One-One Let x1, x2 be any arbitrary value ∈ R, then f (x1) = f (x2) ⇒ [4 – (x1 – 7)3]1/5 = [4 – (x2 – 7)3]1/5 ⇒ 4 – (x1 – 7)3 = 4 – (x2 – 7)3 (Putting both the sides to power 5) ⇒ (x1 – 7)3 = (x2 – 7)3 ⇒ x1 – 7 = x2 – 7 (Taking cube root of both the sides) ⇒ x1 = x2 ⇒ f is one-one. Onto Let y = f (x) = [4 – (x – 7)3]1/5 ⇒ y5 = 4 – (x – 7)3 ⇒ (x – 7)3 = 4 – y5 ⇒ x - 7 = \(\sqrt[3]{4-y^5} \implies x = \sqrt[3]{4-y^5}\) + 7 ... (i) Thus for every y ∈ R, there exists an x = \(\big(\sqrt[3]{4-y^5} +7\big)\) ∈ R ⇒ f is onto. ∴ From (i) x = f -1(y) = \(\big(\sqrt[3]{4-y^5} +7\big)\) or, f -1(x) = \(\big(\sqrt[3]{4-y^5} +7\big)\) (substituting x for y). |
|