InterviewSolution
Saved Bookmarks
| 1. |
If `f(x) =ax^(2) + bx + c` satisfies the identity `f(x+1) -f(x)= 8x+ 3` for all `x in R` Then (a,b)=A. `(2,1)`B. `(4,-1)`C. `(-1,4)`D. `(-1,1)` |
|
Answer» Correct Answer - B We have, `f(x)= ax^(2) + bx + c` `therefore f(x+1) -f(x) = 8x +3` for all `x in R` `rArr {a(x+1)^(2) +b(x+1) +c} - {ax^(2) + bx + c} = 8x + 3` for all `x in R` `rArr x (2a-8) + (a+b-c) =0` for all `x in R` `rArr 2a - 8 =0 and a+b -3=0` `rarr a = 4and b=-1` |
|