1.

If \(f(x) = \begin{cases} x + a,& x\le 0\\|x - 4|, &x >0 \end{cases}\) and\(g(x) = \begin{cases}x + 1, &x <0 \\(x - 4)^2 + b, & x \ge 0\end{cases}\) are continuous on R, then (gof) (2) + (fog) (–2) is equal to :(A) –10(B) 10(C) 8(D) –8

Answer»

Correct option is (D) –8

\(f(x) = \begin{cases} x + a,& x\le 0\\|x - 4|, &x >0 \end{cases}\) ;

\(g(x) = \begin{cases}x + 1, &x <0 \\(x - 4)^2 + b, & x \ge 0\end{cases}\)

For continuity a = 4 and b = –15 

g(f(2)) + f(g(-2))

= g(2) + f(-1) = -8



Discussion

No Comment Found

Related InterviewSolutions