InterviewSolution
Saved Bookmarks
| 1. |
If `f(x)= cos [(pi^(2))/(2)] x + sin[(-pi^(2))/(2)]x,[x]` denoting the greatest integer function,thenA. `f(0) = 0`B. `f((pi)/(3)) = sqrt((3)-1)/(2)`C. `f((pi)/(2)) = -1`D. `f(pi) = 0` |
|
Answer» Correct Answer - B We have , `pi ^(2) ~= 9.8696 `therefore [(pi^(2))/(2)] = 4 and [(-pi^(2))/(2)] = -5` `therefore f(x) = cos 4x sin (-5x) = cos 4 x -sin 5x ` Thus, we have, `f(0) =1` `f((pi)/(3)) = cos.(4pi)/(3)-sin .(-5x)/(3) = - (1)/(2) +(sqrt(3))/(2)= (sqrt(3)-1)/(2)` `f((pi)/(2)) = cos 2 pi - sin.(5pi)/(2) = 1-1=0` and ,`f(pi)= cos 4 pi - sin5 pi = 1` |
|