

InterviewSolution
Saved Bookmarks
1. |
If f(x) = \({\frac{4x + 3}{6x - 4}}\), x ≠ \({\frac{2}{3}}\) show that fof(x) = x, for all x ≠ \({\frac{2}{3}}\). What is the inverse of f? |
Answer» Given f(x) = \({\frac{4x + 3}{6x - 4}}\), x ≠ \({\frac{2}{3}}\) Let us show fof(x) = x (fof)(x) = f(f(x)) = f((4x + 3)/(6x – 4)) = (4((4x + 3)/(6x -4)) + 3)/(6((4x +3)/(6x – 4)) – 4) = \({\frac{16x + 12 + 18x - 12}{24x + 18 - 24x + 16}}\) = (34x)/(34) = x So, fof(x) = x for all x ≠ 2/3 => fof = 1 So, the given function f is invertible and the inverse of f is f itself. |
|