

InterviewSolution
Saved Bookmarks
1. |
If `f(x)=(h_1(x)-h_1(-x))(h_2(x)-h_2(-x))(h_(2n+1)(-x)a n df(200)=0,`then prove that `f(x)`is many one function. |
Answer» `f(-x)=(h_(1)(-x)-h_(1)(x))(h_(2)(-x)-h_(2)(x))…(h_(2n+1)(-x)-h_(2n+1)(x))` ` :. f(-x)=(-1)^(2n+1)f(x)=-f(x)` or `f(x)+f(-x)=0` So, f(x) is odd. Therefore, `f(-200)=-f(200)=0` So, f(x) is many-one. |
|