1.

If f(x) is twice differentiable function in [c1−1,c2+1] and f′(c1)=f′(c2)=0,f′′(c1)⋅f′′(c2)<0,f(c1)=9,f(c2)=0. Let k and m be the minimum number of the roots of f(x)=0 and f′(x)=0 respectively,in [c1−1,c2+1] List - IList - II(I) If f′′(c1)−f′′(c2)>0,then k = (P) 1(II) If f′′(c1)−f′′(c2)<0,then k = (Q) 2(III) If f′′(c1)−f′′(c2)>0,then m = (R) 3(IV) If f′′(c1)−f′′(c2)<0,then m = (S) 4 Which of the following is only CORRECT combination?

Answer»

If f(x) is twice differentiable function in [c11,c2+1] and f(c1)=f(c2)=0,f′′(c1)f′′(c2)<0,f(c1)=9,f(c2)=0. Let k and m be the minimum number of the roots of f(x)=0 and f(x)=0 respectively,in [c11,c2+1]

List - IList - II(I) If f′′(c1)f′′(c2)>0,then k = (P) 1(II) If f′′(c1)f′′(c2)<0,then k = (Q) 2(III) If f′′(c1)f′′(c2)>0,then m = (R) 3(IV) If f′′(c1)f′′(c2)<0,then m = (S) 4

Which of the following is only CORRECT combination?



Discussion

No Comment Found