1.

If f(x) = { `sin[x] /[x],[x] != 0 ; 0, [x] = 0}` , Where[.] denotes the greatest integer function, then `lim_(x rarr 0) f(x)` is equal toA. 1B. 0C. -1D. none of these

Answer» Correct Answer - D
We have,
`[x]={(0", "0le x lt 1,),(0","-1lexlt0,):}`
`f(x)={((sin(1))/(-1)sin1",when" -lexlt0,),(0" ,when "0lexlt1,):}`
`rArr lim_(xto0^-) f(x)= sin 1 and, lim_(xto0^+)f(x)=0`
`rArr lim_(xto0) f(x) ` does not exist.


Discussion

No Comment Found