1.

If `f(x)=x+(1)/(x)`, such that `[f(x)]^(3)=f(x^(3))+lambdaf((1)/(x))`, then `lambda=`A. 1B. 3C. -3D. -1

Answer» Correct Answer - B
we have,
`f(x)=x+(1)/(x)implies f(x^(3))=x^(3)+(1)/(x^(3))`
Now,
`{f(x)}^(3)=(x+(1)/(x))^(3)`
`implies{f(x)}^(3)=(x^(3)+(1)/(x^(3)))+3(x+(1)/(x))`
`implies {f(x)}^(3)=f(x^(3))+3f(x)`
`implies {f(x)}^(3)=f(x^(3))+3f((1)/(x))" " [ :. f(x)=f((1)/(x))]`
`:. lambda=3`


Discussion

No Comment Found

Related InterviewSolutions