InterviewSolution
Saved Bookmarks
| 1. |
If `f(x)=x+(1)/(x)`, such that `[f(x)]^(3)=f(x^(3))+lambdaf((1)/(x))`, then `lambda=`A. 1B. 3C. -3D. -1 |
|
Answer» Correct Answer - B we have, `f(x)=x+(1)/(x)implies f(x^(3))=x^(3)+(1)/(x^(3))` Now, `{f(x)}^(3)=(x+(1)/(x))^(3)` `implies{f(x)}^(3)=(x^(3)+(1)/(x^(3)))+3(x+(1)/(x))` `implies {f(x)}^(3)=f(x^(3))+3f(x)` `implies {f(x)}^(3)=f(x^(3))+3f((1)/(x))" " [ :. f(x)=f((1)/(x))]` `:. lambda=3` |
|