InterviewSolution
Saved Bookmarks
| 1. |
If `f(x) =x(e^([x]+|x|)-2)/([x]+|x|)`, then `lim_(xrarr0)f(x)` is.A. -1B. 0C. 1D. non-existent |
|
Answer» Correct Answer - D We have, `lim_(xto0^-)f=(x)lim_(xto0^-) x(e^(-1-x)-2)/(-1-x)[because [x]=-1and |x|=-x " for" -1 lt x lt 0]` `rArr lim_(xto0^-)f(x)=0xx(e^-1-2)/-1=0` and , ` lim_(xto0^+)f(x)=lim_(xto0)x((e^-x-2)/(x)) [because [x]=0 and |x|=x "for"-1lt x lt 0]` `rArr lim_(xto0^+)f(x)=lim_(xto0)e^x-2=1-2=-1` `therefore lim_(xto0)f(x)` does not exist. |
|