1.

If f (x) = x – x2 + x3 – x4 + .... ∞ for | x | < 1, then f –1(x) is equal to(a) \(\frac{1+x}{x}\)(b) \(\frac{x}{1+x}\)(c) \(\frac{1-x}{x}\)(d) \(\frac{x}{1-x}\)

Answer»

Answer: (d) = \(\frac{x}{1-x}\)

f (x) = x – x2 + x3 – x4 + ..... ∞, | x | < 1 

This is an infinite G.P. with a = x, r = – x. 

∴  f (x) = S\(\frac{a}{1-r}\) = \(\frac{x}{1+x}\) 

Let y = f(x) = \(\frac{x}{1+x}\)

⇒ y (1 + x) = x 

⇒ y + xy = x 

⇒ y = x (1 – y) 

⇒ y = \(\frac{y}{1-y}\) 

⇒ \(f^{-1}(x) = \frac{x}{1-x}\)



Discussion

No Comment Found