InterviewSolution
Saved Bookmarks
| 1. |
If f(x) = x3 - \(\frac{1}{x^3}\)then show that f(x) + f\((\frac{1}x)\) = 0 |
|
Answer» Given f(x) = x3 - \(\frac{1}{x^3}\) Need to prove: f(x) + f\((\frac{1}{x})\) = 0 Replacing x by \(\frac{1}{x}\) we get, f\((\frac{1}{x})\) = \(\frac{1}{x^3}\) - \(\frac{1}{\frac{1}{x^3}}\) = \(\frac{1}{x^3}\) - x3 Now according to the problem, f(x) + f\((\frac{1}{x})\) = x3 - \(\frac{1}{x^3}\) + \(\frac{1}{x^3}\) - x3 ⇒ f(x) + f\((\frac{1}{x})\) = 0 [proved] |
|