1.

If f(x) = x3 - \(\frac{1}{x^3}\)then show that f(x) + f\((\frac{1}x)\) = 0

Answer»

Given f(x) = x3\(\frac{1}{x^3}\)

Need to prove: f(x) + f\((\frac{1}{x})\) = 0

Replacing x by \(\frac{1}{x}\) we get,

f\((\frac{1}{x})\) = \(\frac{1}{x^3}\) - \(\frac{1}{\frac{1}{x^3}}\) = \(\frac{1}{x^3}\) - x3

Now according to the problem,

f(x) + f\((\frac{1}{x})\) = x3\(\frac{1}{x^3}\) + \(\frac{1}{x^3}\) - x3

f(x) + f\((\frac{1}{x})\) = 0 

[proved]



Discussion

No Comment Found