1.

If f(x , y) = ((x + y)^2)/(xy) for every x, y > 0 then f(x,y) must be :

Answer»

`GE 2`
`lt 5`
`ge 4`
none of these

Solution :f9x, y) = `(x^2+y^2+2xy)/(xy) = x/y + y/x +2`
The minimum value of `x/y + y/x` = 2 at x = y
Therefore f(x,y) = `((x+y)/xy)^2 ge 4`


Discussion

No Comment Found