1.

If, for a positive integer `n ,`the quadratic equation,`x(x+1)+(x-1)(x+2)++(x+ n-1)(x+n)=10 n`has two consecutive integral solutions, then `n`is equal to :`10`(2) `11`(3) `12`(4) `9`A. 11B. 12C. 9D. 10

Answer» Correct Answer - A
we have
`x(x+1)+(x+1)(x+2)+…+(x+bar(n-1))(x+n)=10n `
Roots of above equation are consecutive integers .
Let roots be `alpha " and " alpha +1`
`rArr alpha(alpha +1)+(alpha +1)(alpha+2)+…..+(alpha +n )(alpha +n+1)=10 n `
and `(alpha +1)(alpha+2)+(alpha+2)(alpha+3)+.....+(alpha +n)(alpha+n+1)=10n `
Subractiong (2) from (1) we get
`alpha(alpha+1)-(alpha +n)(alpha +n+1)=0`
`rArr alph^2+alpha-alpha^2(2n +1)alpha-n(n+1)=0`
`rArr alpha = (n+1)/(2)`
Putting this vlaue in the original equation i.e
`nx^2+x underset(r=1)overset(n)Sigma (2r-1)+underset(r=1)overset(n)Sigma(r-1)r= 10n` ,we get `rArr 3(n+1)^2-6n(n+1)+2(n+1)-6(n+1)=120`
`rArr n^2=121`
`rArr n=11`


Discussion

No Comment Found