Saved Bookmarks
| 1. |
If force (F), velocity (v) and time (T)are taken as fundamental units, the dimension of mass are ..... |
|
Answer» `[FV^(-1)]` Where K is dimensionless CONSTANT and a, b,CER comparing dimension of both sides, `M^(1)L^(0)T^(0)=[M^(1)L^(1)T^(-2)]^(a)xx[M^(0)L^(1)T^(1)]^(c)` `=M^(a)L^(a)T^(-2a)xxL^(b)T^(-b)xxT^(c)` `M^(1)L^(0)T^(0)=M^(a)L^(a+b)T^(-2b-b+c)` Comparing POWERS of M,L,T `a=1,a+b=0 "" -2a+c=0` `:.1+b=0, "" -2xx1-(-1)+c=0` `:.b=-1 "" :. -2+1+c=0` `:. c=1` `:. m=F^(1)v^(-1)T^(1)` [From equ. (1)] |
|