1.

If h = 1 then prove that (E-1 ∆) x3 = 3x2 – 3x + 1.

Answer»

h = 1 

To prove (E-1 ∆) x3 = 3×2 – 3x + 1 

L.H.S = (E-1 ∆) x3 = E-1 (∆x3

= E-1 [(x + h)3 – x3

= E-1 ( x + h)3 – E-1 (x3

= (x – h + h)3 – (x – h)3  

= x3  (x – h)3  

But given h = 1 

So(E-1 ∆) x3 = x3 - (x – 1)3  

= x3 – [x3 - 3x2 + 3x – 1]

= 3x2 – 3x + 1 

= RHS



Discussion

No Comment Found