InterviewSolution
Saved Bookmarks
| 1. |
If `I=intx^(27)(6x^(2)+5x+4)(x^(2)+x+1)^(6)dx=f(x)+C`, then f(x) is equal toA. `(x^(4)(1+x+x^(2))^(7))/(7)+C`B. `(x^(28)(1+x+x^(2))^(7))/(7)+C`C. `(x^(28)(1+x+x^(2))^(7))/(28)+C`D. None |
|
Answer» Correct Answer - B `I=intx^(24)(1+x+x^(2))^(6).{x^(3)(4+5x+6x^(2))}dx` `=int(x^(4)+x^(5)+x^(6))^(6).(6x^(5)+5x^(4)+4x^(3))dx` `=(x^(28)(1+x+x^(2))^(7))/(7)+c` |
|