InterviewSolution
Saved Bookmarks
| 1. |
If I(m)=int_(0)^(pi)log_(e)(1-2mcosx+m^(2))dx, Then match the following lists and choose the correct code. : |
|
Answer» `impliesI(-m)=int_(0)^(pi)log_(e)(1+2mcosx+m^(2))dx` `=int_(0)^(pi)log_(e)(1+2mcos(pi-x)+m^(2))dx` `=int_(0)^(pi)log_(e)(1-2mcosx+m^(2))dx` `=I(m)=I(m)` `impliesI(m)+I(-m)=int_(0)^(pi)log_(e)(1-2m^(2)cos2x+m^(4))dx` put `2x=t` `impliesI(m)+(-m)=I(m^(2))` `implies2I(m)=I(m^(2))` `implies(I(m^(2)))/(I(m))=2` `=(I(9))/(I(3))=2` and `(I(25))/(I(5))=2` `implies(I(81))/(I(91))=2` and `(I(9))/(I(3))=2` `implies (I(81))/(I(3))=4` |
|