1.

If I(m)=int_(0)^(pi)log_(e)(1-2mcosx+m^(2))dx, Then match the following lists and choose the correct code. :

Answer»


Solution :`I(m)=int_(0)^(PI)log_(e)(1-2mcosx+m^(2))dx`
`impliesI(-m)=int_(0)^(pi)log_(e)(1+2mcosx+m^(2))dx`
`=int_(0)^(pi)log_(e)(1+2mcos(pi-x)+m^(2))dx`
`=int_(0)^(pi)log_(e)(1-2mcosx+m^(2))dx`
`=I(m)=I(m)`
`impliesI(m)+I(-m)=int_(0)^(pi)log_(e)(1-2m^(2)cos2x+m^(4))dx`
put `2x=t`
`impliesI(m)+(-m)=I(m^(2))`
`implies2I(m)=I(m^(2))`
`implies(I(m^(2)))/(I(m))=2`
`=(I(9))/(I(3))=2` and `(I(25))/(I(5))=2`
`implies(I(81))/(I(91))=2` and `(I(9))/(I(3))=2`
`implies (I(81))/(I(3))=4`


Discussion

No Comment Found

Related InterviewSolutions