1.

If `I_n=int( lnx)^n dx` then `I_n+nI_(n-1)`A. `(xlogx)^(n)`B. `x(logx)^(n)`C. `n(logx)^(n)`D. `(logx)^(n-1)`

Answer» Correct Answer - b
Let `I_(n)=intunderset(I)((logx)^(n))*underset(II)(1)dx`
`rArrI_(n)=x(logx)^(n)=intxn(logx)^(n-1)(1)/(x)dx`
`rArr I_(n)=x(logx)^(n)-nI_(n-1)`
`rArrI_(n)+nI_(n-1)=x(logx)^(n)`


Discussion

No Comment Found

Related InterviewSolutions