InterviewSolution
Saved Bookmarks
| 1. |
If `I_n=int( lnx)^n dx` then `I_n+nI_(n-1)`A. `(xlogx)^(n)`B. `x(logx)^(n)`C. `n(logx)^(n)`D. `(logx)^(n-1)` |
|
Answer» Correct Answer - b Let `I_(n)=intunderset(I)((logx)^(n))*underset(II)(1)dx` `rArrI_(n)=x(logx)^(n)=intxn(logx)^(n-1)(1)/(x)dx` `rArr I_(n)=x(logx)^(n)-nI_(n-1)` `rArrI_(n)+nI_(n-1)=x(logx)^(n)` |
|