1.

The value of `int(1-x^7)/(x(1+x^7))dx` is equal toA. `a=1,b=(2)/(7)`B. `a=-1,b=(2)/(7)`C. `a=1,b=-(2)/(7)`D. `a=-1,b=-(2)/(7)`

Answer» Correct Answer - c
We have , `int(1-x^(7))/(x(1+x^(7)))dx=aIn |x| +bIn|x^(7)+1|+C`
Differentiating both sides W.r.t to , x, to x, we get
`(1-x^(7))/(x(1+x^(7)))=(a)/(x)+7b(x^(6))/(x^(7)+1)`
`rArr1-x^(7)=a(1+x^(7))+7bx^(7)rArra=1,b=-(2)/(7)`


Discussion

No Comment Found

Related InterviewSolutions