1.

If `int(1-x^(7))/(x(1+x^(7)))dx=alog_(e)|x|+blog_(e)|x^(7)+1|+c,` thenA. `a=1`B. `a= -1`C. `b=(2)/(7)`D. `b= -(2)/(7)`

Answer» Correct Answer - A::D
`I=int(1-x^(7))/(x(1+x^(7)))dx=a log_(e)|x|+b log_(e)|1+x^(7)|+c`
Differentiating both sides w.r.t. x, we get
`(1-x^(7))/(x(1+x^(7)))=(a)/(x)+b.(7x^(6))/(1+x^(7))`
`implies1-x^(7)=a(1+x^(7))+7bx^(7)`
`impliesa=1, a+7b= -1`
`implies b= -2//7`


Discussion

No Comment Found

Related InterviewSolutions