

InterviewSolution
Saved Bookmarks
1. |
If `int (3sin x+2 cosx)/(3cosx+2sinx)dx=ax+blog_(e)|2 sinx+3 cosx|+c` thenA. `a= -(12)/(13)`B. `b=(6)/(13)`C. `a=(12)/(13)`D. `b= -(15)/(39)` |
Answer» Correct Answer - C::D Differentiating both sides w.r.t. x, we get `(3sin x+2 cosx)/(3cosx+2sinx)=a+(b(2cosx-3sinx))/((2sinx+3cosx))` `=(sinx.(2a-3b)+cosx.(3a+2b))/((3cosx+2 sinx))` Comparing like terms on both sides, we get `3=2a-3b, 2=3a+2b` `implies a=(12)/(13), b= -(15)/(39)` |
|