1.

If `int(dx)/(f(x)) = log {f(x)}^(2) + c`, then what is f(x) equal to ?A. `2x + alpha`B. `x + alpha`C. `(x)/(2) + alpha`D. `x^(2) + alpha`

Answer» Correct Answer - C
We check from the given option one by one. Options (a) and (b) do not satisfy. We check option (c)
Let `f(x) = (x)/(2) + alpha`
`:. int (dx)/((x)/(2) + alpha) = int (2dx)/((x + 2 alpha))`
`=2 log (x + 2 alpha) + c_(1) = log (x + 2alpha)^(2) + c_(1)`
`= log ((x)/(2) + alpha)^(2) + log 2^(2) + c_(1) = log ((x)/(2) + alpha)^(2) + c`


Discussion

No Comment Found

Related InterviewSolutions