InterviewSolution
Saved Bookmarks
| 1. |
If `int(f(x))/(log(sinx))dx=log[log sinx]+c`, then f(x) is equal toA. `cot x`B. `tanx`C. `sec x`D. `"cosec x"` |
|
Answer» Correct Answer - A Given, `int(f(x))/(log(sinx))dx=log[logsinx]+c` On differentiating both sides, we get `(f(x))/(log(sinx))=(1)/(log sinx)(d)/(dx)(log sinx)+0` `rArr" "(f(x))/(log(sinx))=(1)/(log sinx)xx(1)/(sinx)xx(1)/(sinx)xxcosx` `rArr" "f(x)=cotx` |
|