

InterviewSolution
Saved Bookmarks
1. |
If `int x^(26).(x-1)^(17).(5x-3)dx=(x^(27).(x-1)^(18))/(k)+C` where C is a constant of integration, then the value of k is equal toA. 3B. 6C. 9D. 12 |
Answer» Correct Answer - C Differentiating both sides gives `x^(26).(x-1)^(17)(5x-3)=(1)/(k)[x^(27).18(x-1)^(17)+(x-1)^(18)27x^(26)]` `=(x^(26)(x-1)^(17))/(k)[18x+27(x-1)]` `=(x^(26)(x-1)^(17))/(k)(45x-27)` `=9(x^(26)(x-1)^(17))/(k)(5x-3)` `rArrk=9` |
|