1.

If `int x((ln(x+sqrt(1+x^2)))/sqrt(1+x^2)) dx=asqrt(1+x^2)ln(x+sqrt(1+x^2))+bx+c` thenA. `a=1,b=-1`B. `a=1,b=1`C. `a=-1,b=1`D. `a=-1,b=-1`

Answer» Correct Answer - A
`I=int x(In(x+sqrt(x^(2)+1)))/(sqrt(x^(2)+1))dx`
`"Let " t=sqrt(x^(2)+1)`
`"or " (dt)/(dx)=(x)/(sqrt(x^(2)+1))`
` :. I=int In(t+sqrt(t^(2)-1))dt `
`=In(t+sqrt(t^(2)-1))t-int(1+(t)/(sqrt(t^(2)-1)))/(t+sqrt(t^(2)-1))tdt`
`=t " In"(t+sqrt(t^(2)-1))-(1)/(2)int(2t)/(sqrt(t^(2)-1))dt `
`=t" In"(t+sqrt(t^(2)-1))-sqrt(t^(2)-1)+C`
`=sqrt(1+x^(2)) In (x+sqrt(1+x^(2)))-x+C`
`"or " a=1,b=-1`


Discussion

No Comment Found

Related InterviewSolutions