1.

If `int(xe^(x))/(sqrt(1+e^(x)))dx=f(x)sqrt(1+e^(x))-2logg(x)+C`, thenA. `f(x)=x-1`B. `g(x)=(sqrt(1+e^(x))-1)/(sqrt(1+e^(x))+1`C. `g(x)=(sqrt(1+e^(x))+1)/(sqrt(1+e^(x))-1)`D. `f(x)=2(x-2)`

Answer» Correct Answer - B::D
`int(xe^(x))/(sqrt(1+e^(x)))dx`
`=x(sqrt(1+e^(x)))-2intsqrt(1+e^(x))dx`
`=2xsqrt(1+e^(x))-2int(2t^(2))/(t^(2)-1)dt" "("Putting t"=sqrt(1+e^(x)))`
`=2xsqrt(1+e^(x))-4(t+(1)/(2)ln.(t-1)/(t+1))+C`
`2xsqrt(1+e^(x))-4(sqrt(1+e^(x)))-2ln.(sqrt(1+e^(x))-1)/(sqrt(1+e^(x))+1)+C`


Discussion

No Comment Found

Related InterviewSolutions